Melt Infiltrated (MI) SiC/SiC Composites for Gas Turbines Applications

Krishan L. Luthra
GE Global research
Schenectady, NY 12301
Talk Presented at DER Peer Review for Microturbine & Industrial Gas Turbines Programs
on December 4, 2003

Team

• GE Global Research: Material Development, Sample Testing, Rig

Testing, NDE, Design Support

GE Power Systems: End User, Component Design, Engine Testing

Power System Composites (PSC): Component Fabricator

Utility Sites: Engine Testing of Shrouds and Combustor Liners

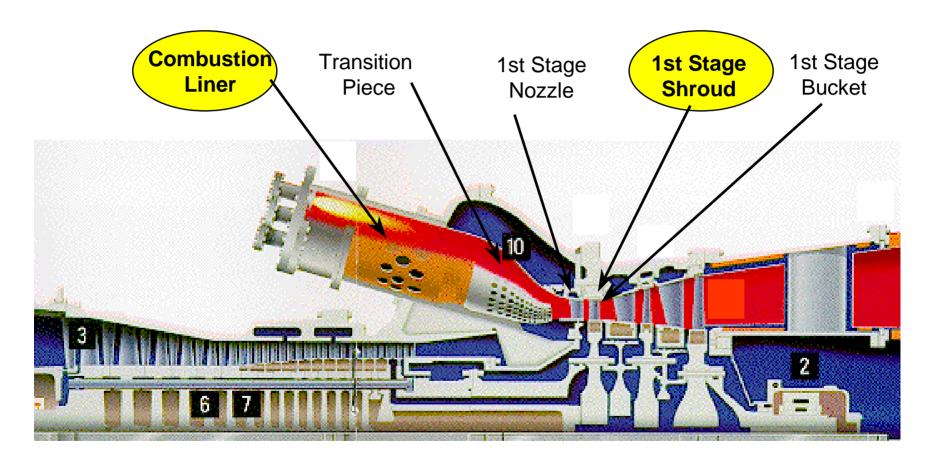
Solar: Engine Testing of Small machine Combustor Liner

ORNL: Material Characterization

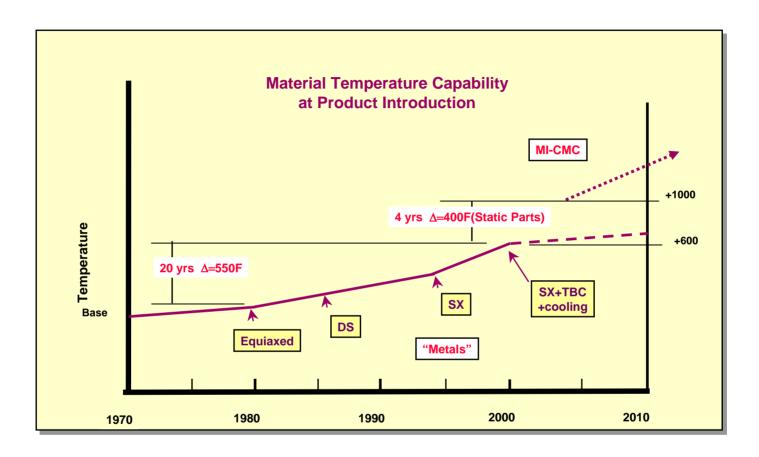
ANL: NDE

DOE: Program Support

Wide Team involving Industrial Research Lab, National Labs, End Users, Utilities and Component Fabricator


Outline

- Team
- Applications & Payoff/Impact on DER Goals
- Material System
- Specific Goals/Objectives
- Tasks & Activities Status
- Technical Barriers and Project Risks
- Summary


Goals/Objectives

Develop Melt Infiltrated Ceramic Matrix Composites (MI-CMCs) for Shrouds and Combustor Liners of Industrial Gas Turbines

Stationary components represent the best short-term opportunity

CMC Opportunity

- CMC's represent a game changing technology
- DOE had the vision to start the CFCC program in early nineties

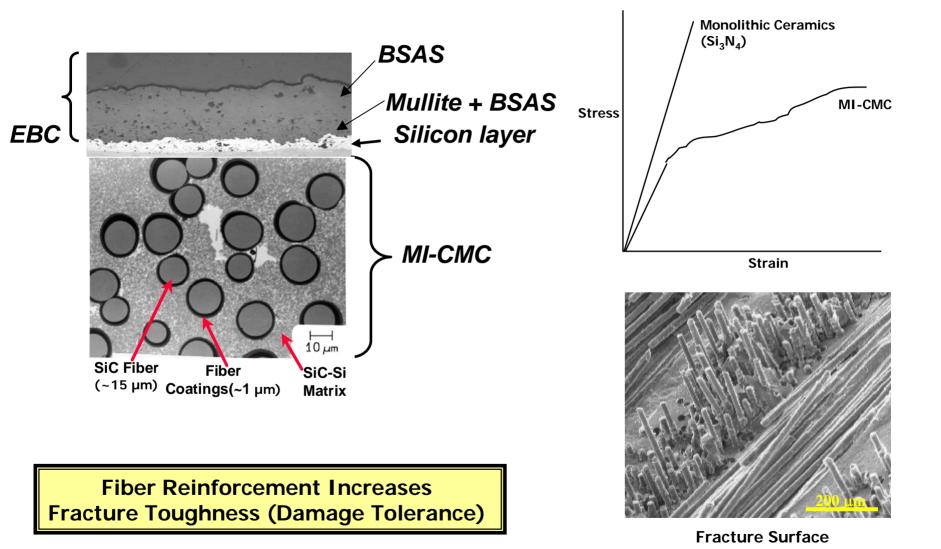
Payoff & Selected Applications

- Higher temperature capability of CMCs allows reduction/elimination of air needed for cooling metallic components
 - Improvement in fuel efficiency
 - Reduction in harmful emissions
 - Higher output of machines
- Applicable to all classes of gas turbines
 - GE gas turbines range 45 KW to 280,000 KW
 - F-class & H-class machines most advanced
 - Installed base for F-class machines ~36 GW(US) & ~64 GW (worldwide)
 In 1999
- Initial focus on shrouds & combustor liners
 - Technology would flow to other stationary components, such as nozzles

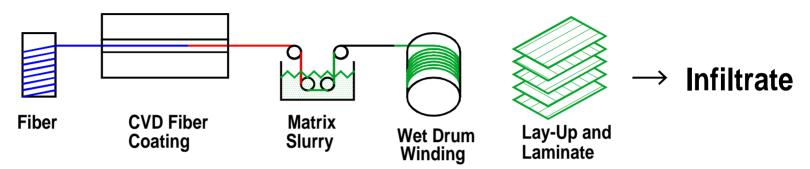
Current Program focused on CMC applications in F-class machines

Payoff For Stationary Components

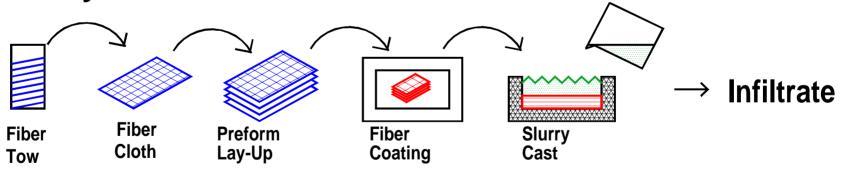
- Up to 1.1% point increase in simple cycle efficiency
- Increase in 3% output
- Market growth of 6%/year and 20% market penetration by 2020
 - US annual savings of ~290 Billion BTU of energy, equivalent to ~0.29
 Billion cubic ft. of natural gas at a cost of ~\$960 Million (2001 dollars)
 - Annual savings of ~4.3 Million MTCE of CO₂ emissions
 - Annual savings of ~51,000 MT of NO_x emissions
 - Extra power generation worth ~1.3 Billion dollars, further reducing the Cost of electricity to customers


Use of CMCs offers opportunity for enormous fuel savings, reduction in emissions and reduction in cost of electricity to customers

Outline

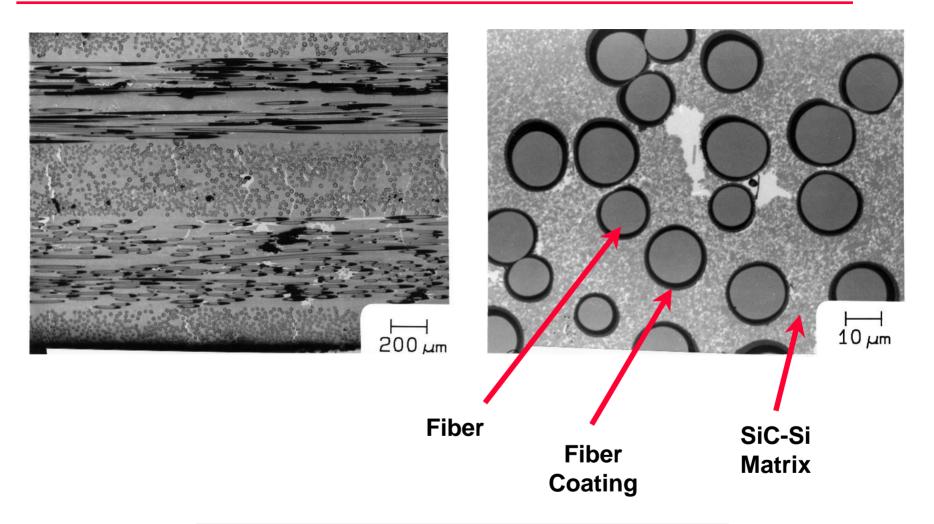

- Team
- Applications & Payoff/Impact on DER Goals
- Material System
- Specific Goals/Objectives
- Tasks & Activities Status
- Technical Barriers and Project Risks
- Summary

MI-CMCs



Melt Infiltration (M.I.) Composites

Prepreg MI



Slurry Cast MI


Work largely focused on Prepreg MI-CMCs

Microstructure of Prepreg MI Composites

Separated Fibers and Fiber Coatings; ~2-3% Porosity

Microstructure of Slurry Cast MI Composites

Fibers Bunched Together, Interconnected Fiber Coatings, and ~6% Porosity

Outline

- Team
- Applications & Payoff/Impact on DER Goals
- Material System
- Specific Goals/Objectives
- Tasks & Activities Status
- Technical Barriers and Project Risks
- Summary

Specific Goals & Objectives


- A. Conduct long-term testing of MI-CMCs in high pressure, high velocity gases (up to ~4000 hrs)
- B. Design and field rainbow test unsealed First Stage Shrouds of F-class machines (~165 MW Simple Cycle and ~280 MW Combined Cycle) for over 4000 hrs
- C. Design & field rainbow test combustor liners of F-class machines for over 4000 hrs
- D. Design & field test sealed first stage shrouds of F-class machines for over 4000 hrs
- E. Fabricate combustor liners for field test in a Centaur-50 Solar Machine

Focused on long-term testing to reduce life risk of components - still a high risk program

Outline

- Team
- Applications & Payoff/Impact on DER Goals
- Material System
- Specific Goals/Objectives
- Tasks & Activities Status
- Technical Barriers and Project Risks
- Summary

Task A: Long-Term Rig Testing

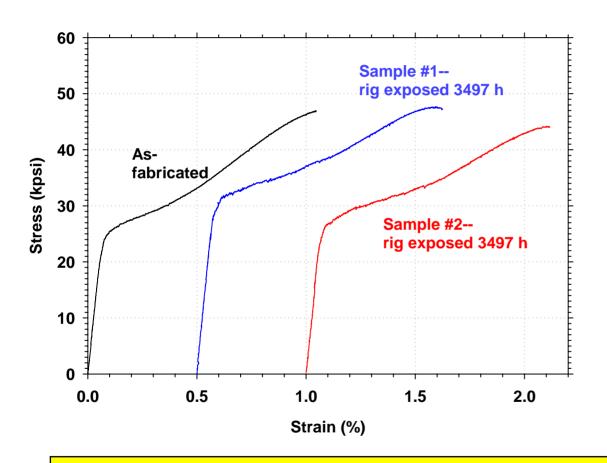
Objective: Evaluate the effects of long-term exposure in turbine conditions on surface recession and mechanical properties

T = 2050 F to 2200 F

P = 120 psia (8.2 atm)

Gas velocity = 410 fps (125 m/s)

xH2O = 0.102


Fuel/air ratio = 0.030

Equivalence ratio = 0.52

Unique material testing facility being used for long-term life testing under turbine-like conditions

Task A: Long-Term Rig Testing

Residual 25 °C mechanical properties of rig exposed EBC coated CMC samples

Remaining Tasks

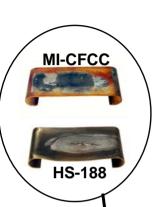
- Characterization of Rig Tested Samples
- Additional testing up to ~500 hours

No degradation in mechanical properties of MI-CMCs for exposure up to ~3500 hours

Task B: Testing of unsealed 7FA First Stage Shrouds

Objective: Evaluate material performance of 7FA shrouds

- Material Test
- Not an engine performance test
- No sealing to prevent cooling air leakage

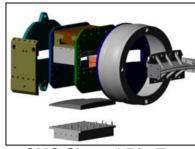

Sub-tasks:

_	Design of Components, completed	2001-2002
_	Design Validation by 4 Rig tests	2001-2002
_	Fabrication of Components	2001-2002
_	Rainbow field test at a customer site	2002-2003
_	Characterization of engine tested shrouds	Ongoing

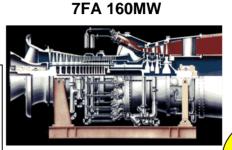
First ever hot stage CMC component test at a large utility site

Development Path of CMC Shrouds

Stg. 1 Shroud


GE-2

Feasibility


Rig Tests

1998

Stg. 2 Shroud

CMC Shroud Rig Test

Field Engine

Validation

Test 2002-2003

Engine Field Test (2005)

Riq Qualification Sealed **Design (2004)**

Rig

Qualification

Unsealed Design 2001-2002

> 50+ cycles & 300 total hours

14 cycles & 5366 hrs

2MW

Small Engine Testing 1999-2000

> 60 cycles & 1000+ hrs

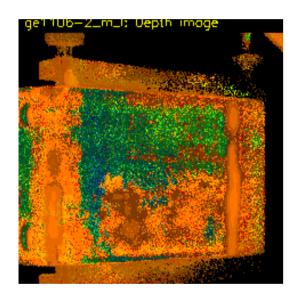
Completed

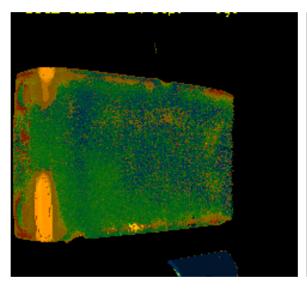
In Progress & Future

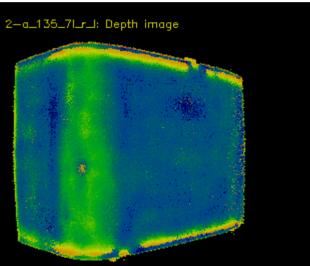
Material **Development** and Testing 1992-2002

200+ cycles & 200 hrs

> Progressive "stepping stone" approach reduces development risk




NDE of Shrouds


2001

Engine Shrouds

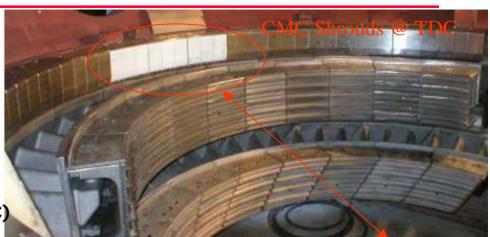
2003

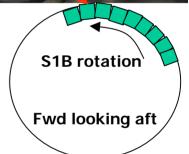
Tremendous Improvement in Quality of Shrouds

Rainbow Engine Testing of 7FA+ First Stage Shroud

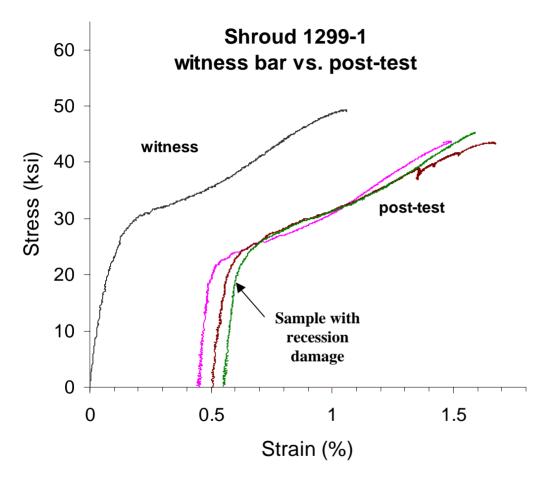
Engine

• GE 7FA+ in Combined Cycle 160 MW (SC) 265 MW (CC)


Hardware


- 9 CMC shrouds
 - 6 Prepreg (GRC); 3 Slurry Cast (PSC)

Status


- Completed over 5000 hours of engine testing
 - 14 starts
 - Parts being characterized
- Material temperature exceeding 2250 F (1230 C)
- No structural damage to CMCs
- EBC damage at several locations
 - Tooling bumps increase the EBC damage on slurry cast MI composites
 - Work being done to understand other EBC damage mechanisms

Successful Rainbow Testing of First Stage Shroud in a Large Gas Turbine

CMC Shroud Post-Test Characterization

- Characterization ongoing now
- Shroud with EBC damage (spall) characterized
 - Worst recession ~31 mils

No degradation in mechanical properties

Task C. 7FA Liner

Objective: Design and Rainbow Field Test a 7FA liner

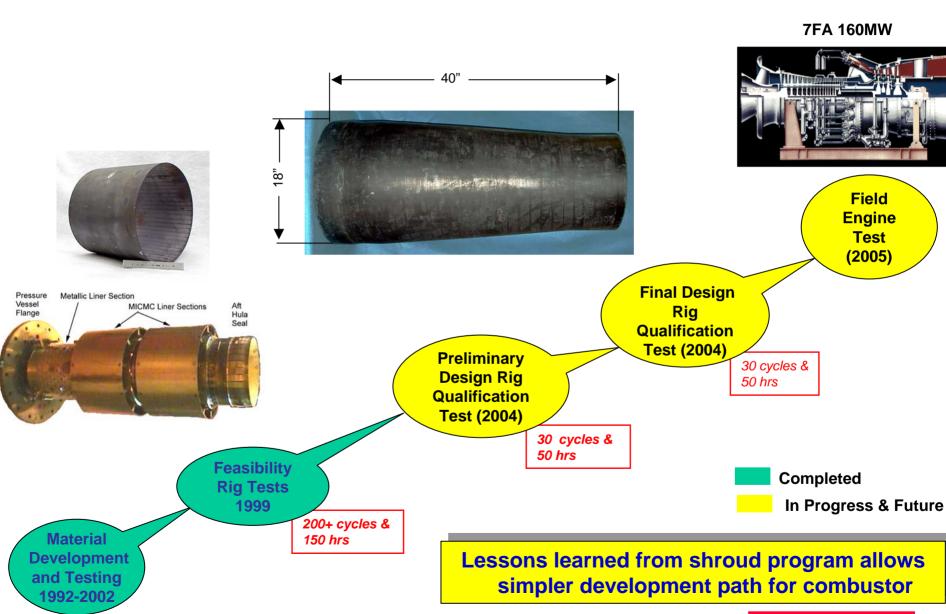
Sub-tasks: Design of Components 2002-2003

Fabrication development

Rig Test for Design Validation

Rainbow Engine Test

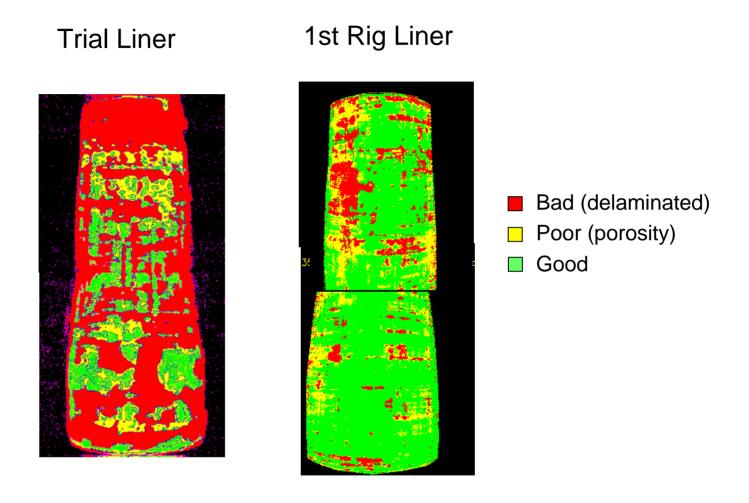
Ongoing 2004


2005

Three times the size of the largest CMC component ever made

Development Path of CMC Combustor Liners

7FA Combustor Liner


- First liner fabrication trial showed significant challenges Shape distortion, wrinkles & incomplete infiltration
- Size of 7FA Liner represents a big technical challenge
 Factor of 6 bigger than anything made by us

7FA Combustor Liner: Status

- Design completed for rig test
- Rig test liner
 - An order of magnitude better than trial liner
 - No shape distortion
 - No wrinkles
 - Almost complete infiltration
 - NDE shows defects
- Rig Test scheduled for 2004

Liner on schedule for an Engine Test in 2005

Major improvement in 7FA liner quality

Task D: Testing of 7FA First Stage Shrouds with Sealing

Objective: Evaluate performance of 7FA shroud system

- Complete shroud system with in between sealing
- Up to ~48 shrouds

Sub-tasks:

_	Component and Seal Design	2003-2004
_	Design Validation by Rig tests	2004
_	Fabrication of Components	2004-2005
_	Field test at a customer site	2005
_	Characterization of engine tested shrouds	2006

System and Seal Design compatible with CMC shape capabilities and properties represents the largest challenge

Task E: Solar Combustor Liner

Objective: Fabrcate Prepreg MI-CMC liners for testing in a Centaur-50

Solar Gas turbine

Sub-tasks:

Fabrication of Liners (Ongoing)2003-2004

Field testing by Solar2004-2005

Characterization of engine tested liners
 2005

Fabrication & Testing of Solar Liner represents synergistic opportunities for Solar and GE

Outline

- Team
- Applications & Payoff/Impact on DER Goals
- Material System
- Specific Goals/Objectives
- Tasks & Activities Status
- Technical Barriers and Project Risks
- Summary

Technical Barriers

- Component Design (both for combustor liners & shrouds)
 - Expansion mismatch between metal & ceramic
 - Low stress capability of CMCs
 - Require several iterations on design, design validation by several rig tests, followed by characterization
- Sealing of Shrouds
 - Needed to prevent air leaks
 - Seals operating at higher temperatures than with metallic components
 - Require several iterations on design and design validation
- Fabrication of Defect-free CMC liners
 - Scale up issues to be addressed based on prior experience
- Component Life
 - Required EBC lives are of the order of over ~24000 hrs
 - Required component lives are of the order of 48000+ hrs
 - > Gradual Improvements based on Field Tests

EBC Life and Component Design/Sealing represent key challenges

Project Risks

- Finding a Suitable Test site for 7FA machines
 - GE has the largest fleet of F-class machines in field
 - Requires flexibility to coordinate with test site.... Could impact schedule
- Limited Opportunities for Borescope Examination
 - Loss of at least 160 MW of power
 - Need to ensure safe operation in between inspection; use additional diagnostic instrumentation
- Consequences of CMC failure in a large machine are tremendous
 - Loss of at least 160 MW of power
 - Need to take extra rig testing steps to ensure the system safety

Machine size represents opportunities as well as challenges

Summary

- CMCs represent a game changing technology for industrial gas turbines (400° F improvement over metals)
- CMCs offer opportunities for enormous fuel savings, reduction in emissions, and reduction in cost of electricity to customers
- Unique high pressure, high velocity rig being used for long-term testing of CMC samples
- Over 5000 hours of successful field rainbow testing of 7FA shrouds performed
- Design and Fabrication of 7FA liner (~48" long x ~16" in dia) ongoing now
- Future work focused on design, fabrication & engine testing of sealed shrouds, fabrication of CMC liner for a Solar test, and design, fabrication & rainbow testing of 7FA liner

GE working with DOE in a risk-reducing, step-wise approach for developing CMCs for Industrial Gas Turbines